Seven Years in the Life of Hypergiants' Off-nets

Petros Gigis¹

Matt Calder^{2,3}, Lefteris Manassakis⁴, George Nomikos^{4,5}, Vasileios Kotronis⁴, Xenofontas Dimitropoulos^{4,6}, Ethan Katz-Bassett³, Georgios Smaragdakis⁷

¹ University College London, ² Microsoft, ³ Columbia University,
⁴ FORTH-ICS, ⁵ Lancaster University, ⁶ University of Crete, ⁷ TU Delft

ACM SIGCOMM, August 2021

Construct datacenters

Construct datacenters

Roll out fiber to built their backbone

--- Network

Construct datacenters

Roll out fiber to built their backbone

Network

Peer at IXPs and collocation facilities

Construct datacenters

Roll out fiber to built their backbone

Network

Peer at IXPs and **collocation facilities**

Peer directly with eyeballs

Construct datacenters

Deploy off-net servers

Roll out fiber to built their backbone

Network

Peer at IXPs and collocation facilities

Peer directly with eyeballs

Hypergiant AS(es)

On-net: A server deployment inside the HG own network.

Hypergiant AS(es)

On-net: A server deployment inside the HG own network.

On-net: A server deployment inside the HG own network.

On-net: A server deployment inside the HG own network.

Off-net: A server deployment outside of the HG own network.

On-net: A server deployment inside the HG own network.

Off-net: A server deployment outside of the HG own network.

On-net: A server deployment inside the HG own network.

Off-net: A server deployment outside of the HG own network.

Revisit the value of peering and how traffic flows in the Internet.

- Revisit the value of peering and how traffic flows in the Internet.
- Understand the evolution of the Internet structure.

- Revisit the value of peering and how traffic flows in the Internet.
- Understand the evolution of the Internet structure.
- Localisation of content within an Internet Service Provider (ISP).

Peering link

HG

- Revisit the value of peering and how traffic flows in the Internet.
- Understand the evolution of the Internet structure.
- Localisation of content within an Internet Service Provider (ISP).

HG

Peering link

Traditional techniques (e.g., IP-to-AS mapping) do not work.

Traditional techniques (e.g., IP-to-AS mapping) do not work.

Existing approaches^[1,2] to discover off-nets lack generality and are <u>fragile to HG changes</u>.

[1] "Mapping the Expansion of Google's Serving Infrastructure", Calder et. al., IMC 2013 [2] "Open Connect Everywhere: A Glimpse at the Internet Ecosystem through the Lens of the Netflix CDN", Böttger et. al., CCR 48

Traditional techniques (e.g., IP-to-AS mapping) do not work.

Existing approaches^[1,2] to discover off-nets lack generality \bullet and are <u>fragile to HG changes</u>.

[1] "Mapping the Expansion of Google's Serving Infrastructure", Calder et. al., IMC 2013 [2] "Open Connect Everywhere: A Glimpse at the Internet Ecosystem through the Lens of the Netflix CDN", Böttger et. al., CCR 48

So, is there a generic method to uncover the off-nets of all Hypergiants?

Traditional techniques (e.g., IP-to-AS mapping) do not work.

Existing approaches^[1,2] to discover off-nets lack generality and are <u>fragile to HG changes</u>.

[1] "Mapping the Expansion of Google's Serving Infrastructure", Calder et. al., IMC 2013 [2] "Open Connect Everywhere: A Glimpse at the Internet Ecosystem through the Lens of the Netflix CDN", Böttger et. al., CCR 48

- - Surprisingly, yes!

So, is there a generic method to uncover the off-nets of all Hypergiants?

The majority of the traffic is encrypted.

The majority of the traffic is encrypted.

18 Jul 2021 Across Google: 95%

Source: Google Transparency Report

May 01, 2021

Jan 01, 2018

Jan 01, 2020

- The majority of the traffic is encrypted.
- Enabling change: encrypted traffic is the new standard

- The majority of the traffic is encrypted.
- Enabling change: encrypted traffic is the new standard
 - Using TLS certificates we can find the service owner.

- The majority of the traffic is encrypted.
- Enabling change: encrypted traffic is the new standard
 - Using TLS certificates we can find the service owner.
 - Corpuses of TLS data are publicly available.

Contributions

• We developed the first technique capable of uncovering the off-net footprint deployment of all Hypergiants.

- We developed the first technique capable of uncovering the off-net footprint deployment of all Hypergiants.
- We applied it to map their growth from 2013 to 2021.

- We developed the first technique capable of uncovering the off-net footprint deployment of all Hypergiants.
- We applied it to map their growth from 2013 to 2021.
- We found that Google grew by 2,766 ASes, reaching 3,810 in April 2021.

- We developed the first technique capable of uncovering the off-net footprint deployment of all Hypergiants.
- We applied it to map their growth from 2013 to 2021.
- We found that Google grew by 2,766 ASes, reaching 3,810 in April 2021.
- facebook and NETFLIX launched their own CDNs and now have presence in at least 2,115 ASes.

Not a head-to-head comparison of different HGs as we do not know:

- Not a head-to-head comparison of different HGs as we do not know:
 - 1. Business strategies.

- Not a head-to-head comparison of different HGs as we do not know:
 - 1. Business strategies.
 - 2. Peering agreements.

- Not a head-to-head comparison of different HGs as we do not know:
 - 1. Business strategies.
 - 2. Peering agreements.
 - 3. Performance and cost goals.

- Not a head-to-head comparison of different HGs as we do not know:
 - 1. Business strategies.
 - 2. Peering agreements.
 - 3. Performance and cost goals.
- Performance evaluation of different HG off-net footprints is out of the scope of this work.

- Not a head-to-head comparison of different HGs as we do not know:
 - 1. Business strategies.
 - 2. Peering agreements.
 - 3. Performance and cost goals.
- Performance evaluation of different HG off-net footprints is out of the scope of this work.
- In this work, we focus only on uncovering the off-net deployments.

Step 0: <u>Collect TLS certificates dataset</u>

- Step 0: <u>Collect TLS certificates dataset</u>
- Step 1: Validate Certificates
 - D

Exclude self-signed, expired and certificates with a non-verified chain.

Serial Number 0E 90 13 94 13 97 F4 0A 2D 49 69 6D 29 0F 9F E2

Signature Algorithm SHA-256 with RSA Encryption (1.2.840.113549.1.1.11)

Not Valid Before Tuesday, 20 July 2021 at 01:00:00 British Summer Time Not Valid After Tuesday, 19 October 2021 at 00:59:59 British Summer Time

- Step 2: <u>Learn Hypergiant TLS Fingerprints</u>

Valid TLS Certificates

Input the HG keyword e.g., "facebook" and the TLS scans for all on-net IPs.

11

- Step 2: Learn Hypergiant TLS Fingerprints

Input the HG keyword e.g., "facebook" and the TLS scans for all on-net IPs.

11

- Step 3: <u>Use Fingerprints to Identify candidate off-nets</u>
 - Search for certificates matching the on-net fingerprints.

On-net TLS Fingerprints

- Step 3: Use Fingerprints to Identify candidate off-nets
 - Search for certificates matching the on-net fingerprints.

- Step 3: Use Fingerprints to Identify candidate off-nets
 - Search for certificates matching the on-net fingerprints.

- Does presence of a Hypergiant certificate on a server outside
- No, it does not!

their own network guarantee that the server is an off-net server deployment?

- Does presence of a Hypergiant certificate on a server outside
- No, it does not!

their own network guarantee that the server is an off-net server deployment?

- Does presence of a Hypergiant certificate on a server outside
- No, it does not!

their own network guarantee that the server is an off-net server deployment?

Akamai off-nets

Step 4: Learn Hypergiant HTTP(S) Fingerprints using headers

Step 4: Learn Hypergiant HTTP(S) Fingerprints using headers

Content-Type: text/html; charset="utf-8" **X-FB-Debug:** BsHPkKRtI6ZxkfjPftwA20vHTlx7hysdizbXq7joztLW6D9R8 Date: Wed, 04 Aug 2021 12:12:53 GMT **Alt-Svc:** h3-29=":443"; ma=3600,h3-27=":443"; ma=3600 Content-Length: 0

Step 4: Learn Hypergiant HTTP(S) Fingerprints using headers

HTTP/1.1 301 Moved Permanently Location: https://facebook.com/ Content-Type: text/html; charset="utf-8" X-FB-Debug: BsHPkKRtI6ZxkfjPftwA20vHTlx7hysdizbXq7joztLW6D9R8 Date: Wed, 04 Aug 2021 12:12:53 GMT **Alt-Svc:** h3-29=":443"; ma=3600,h3-27=":443"; ma=3600 **Connection:** keep-alive Content-Length: 0

HTTPS header Fingerprint

14

- Step 5: <u>Confirm Candidates Using HTTP(S)</u>
 - Apply the HTTP(S) fingerprints to the off-net candidates and classify as off-nets any that match the HG fingerprints.

HTTP header Fingerprint

HTTPS header Fingerprint

- Step 5: <u>Confirm Candidates Using HTTP(S)</u>
 - Apply the HTTP(S) fingerprints to the off-net candidates and classify as off-nets any that match the HG fingerprints.

HTTPS header Fingerprint

Candidate off-net server deployments

Off-net server deployments

- The TLS certificate reveals if an IP hosts a service for the Hypergiant.
- HTTP(S) header reveals who operates the server.
- The IP address reveals if it is an on-net or off-net server.

- The TLS certificate reveals if an IP hosts a service for the Hypergiant.
- HTTP(S) header reveals who operates the server.
- The IP address reveals if it is an on-net or off-net server.
- To consider a server as a Hypergiant off-net deployment:

- The TLS certificate reveals if an IP hosts a service for the Hypergiant.
- HTTP(S) header reveals who operates the server.
- The IP address reveals if it is an on-net or off-net server.
- To consider a server as a Hypergiant off-net deployment:
 - TLS certificate and HTTP(S) headers must map to the Hypergiant.

- The TLS certificate reveals if an IP hosts a service for the Hypergiant.
- HTTP(S) header reveals who operates the server.
- The IP address reveals if it is an on-net or off-net server.
- To consider a server as a Hypergiant off-net deployment:
 - TLS certificate and HTTP(S) headers must map to the Hypergiant.
 - The IP address is not part of the Hypergiant own network.

Datasets

Datasets

TLS certificate scans:

collects certificates in IPv4-wide scans on port 443.

Datasets

- TLS certificate scans:
 - RAPID
 - Quarterly snapshot from Oct. 2013 to Apr. 2021. 0

collects certificates in IPv4-wide scans on port 443.

Datasets

- TLS certificate scans:
 - RAPID collects certificates in IPv4-wide scans on port 443. Quarterly snapshot from Oct. 2013 to Apr. 2021. 0

+ Custom active scan.

Datasets

- TLS certificate scans:
 - RAPID
 - Quarterly snapshot from Oct. 2013 to Apr. 2021.
 - Censys

+ Custom active scan.

- HTTP(S) headers (Validation):
 - from Oct. 2013 to Apr. 2021.

collects certificates in IPv4-wide scans on port 443.

We used corpuses of available HTTP(S) headers from **RAPID**

Google

facebook

Google

Differences between only-certificates and &/or HTTP(S) are minimal.

facebook

Google

- Differences between only-certificates and &/or HTTP(S) are minimal.
- For Google using

facebook

we are able to identify more ASes.

Off-net footprint growth for top-4 HGs (Google, Facebook, Netflix and Akamai) over time.

Off-net footprint growth for top-4 HGs (Google, Facebook, Netflix and Akamai) over time.

Google has off-nets in more than 3.8k ASes

Off-net footprint growth for top-4 HGs (Google, Facebook, Netflix and Akamai) over time.

Google has off-nets in more than 3.8k ASes

Off-net footprint growth for top-4 HGs (Google, Facebook, Netflix and Akamai) over time.

19

Off-net footprint growth for top-4 HGs (Google, Facebook, Netflix and Akamai) over time.

Google has off-nets in more than 3.8k ASes

Longitudinal Growth (2013-2021)

Off-net footprint growth for top-4 HGs (Google, Facebook, Netflix and Akamai) over time.

Off-net footprint growth for top-4 HGs (Google, Facebook, Netflix and Akamai) over time.

Google has off-nets in more than 3.8k ASes

We label the ASes hosting off-nets based on their customer cone size*.

- We consider 5 categories of ASes:

We label the ASes hosting off-nets based on their customer cone size*.

Growth of Google's off-net footprint grouped by AS customer cone size.

Growth of Google's off-net footprint grouped by AS customer cone size.

• 4x increase in Stub, Small and, Medium ASes.

Growth of Google's off-net footprint grouped by AS customer cone size.

• 4x increase in Stub, Small and, Medium ASes.

• 2x increase in Large and XLarge ASes.

Growth of Google's off-net footprint grouped by AS customer cone size.

• 4x increase in Stub, Small and, Medium ASes.

2x increase in Large and XLarge ASes.

Growth significantly increase after the open of the economy.

Growth of Netflix and Facebook off-net footprints grouped by AS customer cone size.

Growth of Netflix and Facebook off-net footprints grouped by AS customer cone size.

Birth of HG CDNs.

Growth of Netflix and Facebook off-net footprints grouped by AS customer cone size.

Birth of HG CDNs.

More aggressive increase 10x.

Growth of Netflix and Facebook off-net footprints grouped by AS customer cone size.

Birth of HG CDNs.

- More aggressive increase 10x.
- Similar contributions of different types of networks.

Growth of Netflix and Facebook off-net footprints grouped by AS customer cone size.

Birth of HG CDNs.

- More aggressive increase 10x.
- Similar contributions of different types of networks.
- Significant increase after the lockdown.

Growth of Akamai's off-net footprint grouped by AS customer cone size.

Growth of Akamai's off-net footprint grouped by AS customer cone size.

Contribution of stub ASes since 2018 decline.

Growth of Akamai's off-net footprint grouped by AS customer cone size.

Contribution of stub ASes since 2018 decline.

Contribution of small & medium remain stable.

Growth of Akamai's off-net footprint grouped by AS customer cone size.

Contribution of stub ASes since 2018 decline.

Contribution of small & medium remain stable.

Sum of stub, small and medium remains 84%.

22

Regional Growth

Regional Growth

Growth of top-4 HGs (plus Alibaba) in Asia and South America continent over time.

Regional Growth

Growth of top-4 HGs (plus Alibaba) in Asia and South America continent over time.

 Significant increase of all HGs (except Akamai) in all regions.

Regional Growth

Growth of top-4 HGs (plus Alibaba) in Asia and South America continent over time.

• Significant increase of all HGs (except Akamai) in all regions.

Exponential growth in Asia and South America.

Regional Growth

Growth of top-4 HGs (plus Alibaba) in Asia and South America continent over time.

• Significant increase of all HGs (except Akamai) in all regions.

Exponential growth in Asia and South America.

Regional growth of some HGs (e.g., Alibaba in Asia).

Source: How Big is that Network? | labs.apnic.net 24

 APNIC conducts measurement campaigns (Google Ads) to estimate the user population per AS.

Source: How Big is that Network? | labs.apnic.net 24

- APNIC conducts measurement campaigns (Google Ads) to estimate the user population per AS.
- Uses (i) data to normalise findings.

Source: How Big is that Network? | <u>labs.apnic.net</u> 24

- APNIC conducts measurement campaigns (Google Ads) to estimate the user population per AS.
- Uses (iii) data to normalise findings.
- The only available dataset that provides this type of information.

Source: How Big is that Network? | labs.apnic.net 24

- APNIC conducts measurement campaigns (Google Ads) to estimate the user population per AS.
- Uses (iii) data to normalise findings.
- The only available dataset that provides this type of information.
- Daily snapshots from October 2017 to date.

Source: How Big is that Network? | labs.apnic.net 24

Facebook's off-net footprint user coverage (%).

and other developing regions.

Example: Facebook in 2017 announced that it had plans to expand in Africa

- and other developing regions.
- Our analysis reflect that they achieved this goal.

Example: Facebook in 2017 announced that it had plans to expand in Africa

Hypergiants' off-nets Expansion Internet User Population Coverage <u>based on customer cone</u>

Hypergiants' off-nets Expansion Internet User Population Coverage <u>based on customer cone</u>

Hypergiants' off-nets Expansion Internet User Population Coverage <u>based on customer cone</u>

% of a country's Internet users **including** and **excluding** the customer cones of ASes hosting Facebook off-nets (April 2021).

Hypergiants' off-nets Expansion Internet User Population Coverage based on customer cone

27% increase in global user coverage

% of a country's Internet users including and excluding the customer cones of ASes hosting Facebook off-nets (April 2021).

What-If #1: Serving into the customer cone noticeably expands coverage in parts of Africa, Asia, Europe and South America.

Hypergiants' off-nets Expansion Internet User Population Coverage based on customer cone

27% increase in global user coverage

% of a country's Internet users including and excluding the customer cones of ASes hosting Facebook off-nets (April 2021).

- What-If #1: Serving into the customer cone noticeably expands coverage in parts of Africa, Asia, Europe and South America.
- by deploying off-nets in only 5 ASes.

What-If #2: Facebook coverage could significantly increase in the US from 33.9% to 61.8%

ASes that host at least one top-4 HGs.

 More than 97% of ASes hosting off-nets, host at least one of the top-4 HGs.

ASes that host at least one top-4 HGs.

- More than 97% of ASes hosting off-nets, host at least one of the top-4 HGs.
- Top-4 HGs have increasingly similar footprints.

ASes that host at least one top-4 HGs.

- More than 97% of ASes hosting off-nets, host at least one of the top-4 HGs.
- Top-4 HGs have increasingly similar footprints.
 - In 2021, more than 70% of ASes with off-nets host 2-4 top-4 HGs.
 - In 2013, it was less than 30%.

ASes that host at least one top-4 HGs.

- More than 97% of ASes hosting off-nets, host at least one of the top-4 HGs.
- Top-4 HGs have increasingly similar footprints.
 - In 2021, more than 70% of ASes with off-nets host 2-4 top-4 HGs.
 - In 2013, it was less than 30%.
- A networks that already hosts one of the top-4 HGs is likely to later host more.

Validation from Hypergiants.

- Validation from Hypergiants.
 - 89-95% of ASes hosting their off-nets.

Four replied to our survey, all of them indicated that we correctly uncovered

- Validation from Hypergiants.
 - 89-95% of ASes hosting their off-nets.
- **Comparison to Earlier Results.**
 - Google: Previous study in April 2016 reported 1445 ASes. We identified 98% of them, plus 283 additional ASes.
 - facebook : Comparison with three studies: We identified 96% (2018), 94% (2019) and 95% (2021) of the ASes.

Four replied to our survey, all of them indicated that we correctly uncovered

NETFLIX : Previous study in May 2017 reported 743 ASes, we report 769 ASes.

- TLS-SNI.
 - Multiple TLS certificates in a single IP address.

- TLS-SNI.
 - Multiple TLS certificates in a single IP address.
- Missing Headers.
 - Default HTTP(S) headers (e.g., NGI/X).

- TLS-SNI.
 - Multiple TLS certificates in a single IP address.
- Missing Headers.
 - Default HTTP(S) headers (e.g., NGI/X).
- Special Architectures by HGs.
 - HGs acting as middleware proxies (e.g., cloudflare).

- An Increasingly Private Internet.
 - Regulatory implications.
 - ISPs lose negotiation power in peering agreements with HGs.
 - Small networks reduce cost as upstream/downstream traffic is reduced.

- An Increasingly Private Internet.
 - Regulatory implications.
 - ISPs lose negotiation power in peering agreements with HGs. \bullet
 - Small networks reduce cost as upstream/downstream traffic is reduced.
- Unintended Consequences.
 - Knowing HGs off-net servers makes it easier for attackers to be effective.
 - Business intelligence by competitors. ightarrow

- An Increasingly Private Internet.
 - Regulatory implications.
 - ISPs lose negotiation power in peering agreements with HGs.
 - Small networks reduce cost as upstream/downstream traffic is reduced.
- Unintended Consequences.
 - Knowing HGs off-net servers makes it easier for attackers to be effective.
 - Business intelligence by competitors.
- Hide-and-Seek.
 - Increase the bar for server identification by implementing TLS-SNI. \bullet

Large content providers serve most of the traffic on today's Internet. To send this traffic, some of them host off-net servers in user ASes around the world.

- Generic methodology to uncover off-net deployments.

Large content providers serve most of the traffic on today's Internet. To send this traffic, some of them host off-net servers in user ASes around the world.

lakeaways

- Generic methodology to uncover off-net deployments.
- Significant growth of 3 (Google, facebook, NETFLIX) out of 4 top HGs, hosted in more than 4.5k ASes.

• Large content providers serve most of the traffic on today's Internet. To send this traffic, some of them host off-net servers in user ASes around the world.

- Large content providers serve most of the traffic on today's Internet. To send this traffic, some of them host off-net servers in user ASes around the world.
- Generic methodology to uncover off-net deployments.
- Significant growth of 3 (Google, facebook, NETFLIX) out of 4 top HGs, hosted in more than 4.5k ASes.
- Significant fraction of user population can be served by off-nets in their ISP.

- Large content providers serve most of the traffic on today's Internet. To send this traffic, some of them host *off-net* servers in user ASes around the world.
- Generic methodology to uncover off-net deployments.
- Significant growth of 3 (Google , facebook , NETFLIX) out of 4 top HGs, hosted in more than 4.5k ASes.
- Significant fraction of user population can be served by off-nets in their ISP.
- Study of ISPs williness to host HG off-nets.

lakeaways

- Large content providers serve most of the traffic on today's Internet. To send this traffic, some of them host off-net servers in user ASes around the world.
- Generic methodology to uncover off-net deployments.
- Significant growth of 3 (Google, facebook, NETFLIX) out of 4 top HGs, hosted in more than 4.5k ASes.
- Significant fraction of user population can be served by off-nets in their ISP.
- Study of ISPs williness to host HG off-nets.
- Artifacts, datasets, and an interactive portal are available at:

https://pgigis.github.io/hypergiants-offnets/

